

HACIA EDIFICIOS RESIDENCIALES + EFICIENTES La aportación de la ventana, el vidrio y la protección solar Hotel Torre Catalunya • Barcelona • 30 octubre 2013 El vidrio como elemento activo para reducir la demanda energética de la envolvente

EL HUECO

1. APARICIÓN DEL HUECO

- VENTILACIÓN
- ILUMINACIÓN
- DEFENSA

2. NECESIDAD DE PROTECCIÓN = VIDRIO

- VIENTO
- AGUA
- FRÍO

EL HUECO ACTUAL

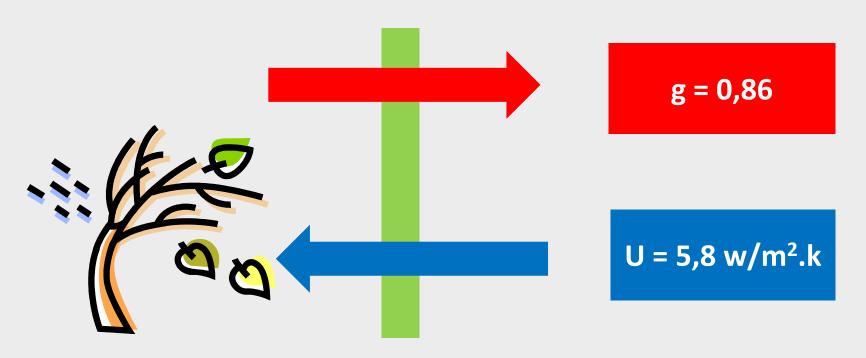
3. VIDRIO = ELEMENTO ACTIVO

- REDUCCIÓN RADIACIÓN
- CONTROL ENERGÉTICO
- SOSTENIBILIDAD
- CONFORT

REDUCCIÓN DEMANDA ENERGÉTICA

- MEJOR AISLAMIENTO
 - DISMINUCIÓN PÉRDIDAS

- CONTROL RADIACIÓN
 - MENOR CONSUMO



EL VIDRIO SIMPLE

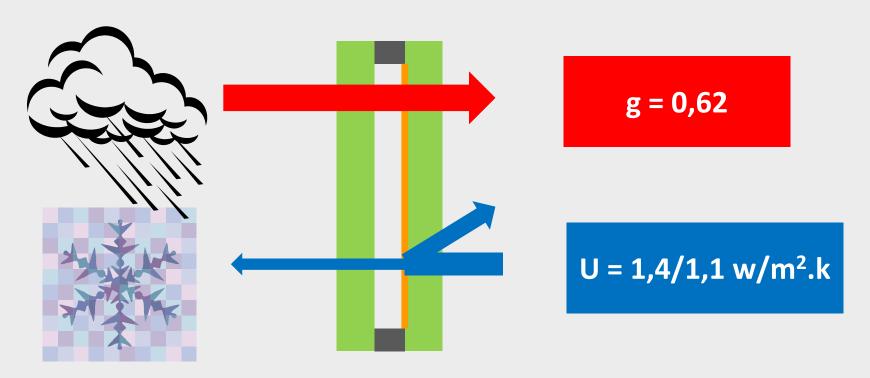
Monolítico..... float 1959 / 1967

EL VIDRIO "ANTIGUO"

Vidrio Aislante..... 1938 / 1970 / 1976

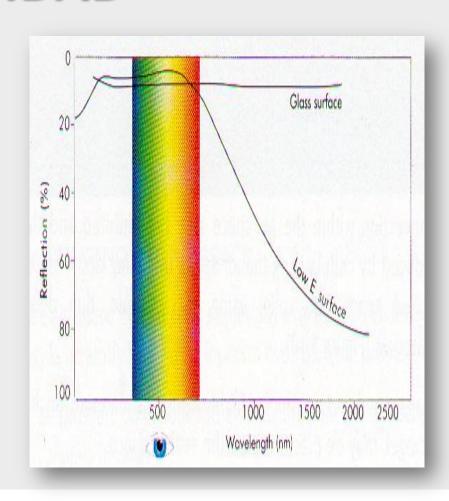
g = 0,77

 $U = 3,3/2,6 \text{ w/m}^2.\text{k}$



EL VIDRIO "BÁSICO"

Vidrio aislante con capa bajo emisiva 1980/90



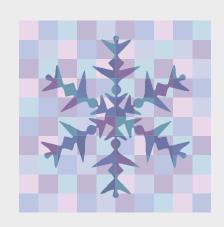
EMISIVIDAD

CAPACIDAD DE UNA SUPERFÍCIE PARA ABSORBER ENERGIA Y REFLEJARLA

vidrios sin capa $\varepsilon = 0.89$ vidrios especiales $\varepsilon = 0.01$

Cuanto menor sea el valor de la ε mayor será la radiación reflejada

COMPARATIVO


	TL	U	g
FLOAT 4	90%	5,8	0,86
		55%	12%
4 /16/ 4	80%	2,7 / 2,6	0,77
		58%	17%
4 /16/ K4	80%	1,4 /1,1	0,62

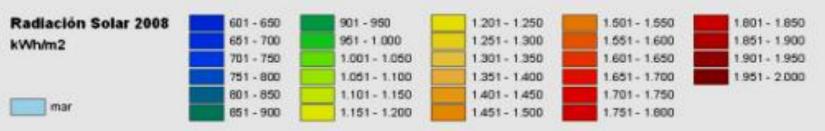
AISLAMIENTO TÉRMICO - U

Ha mejorado más de 81%

PROTECCIÓN SOLAR - g

Ha mejorado sólo un 27%

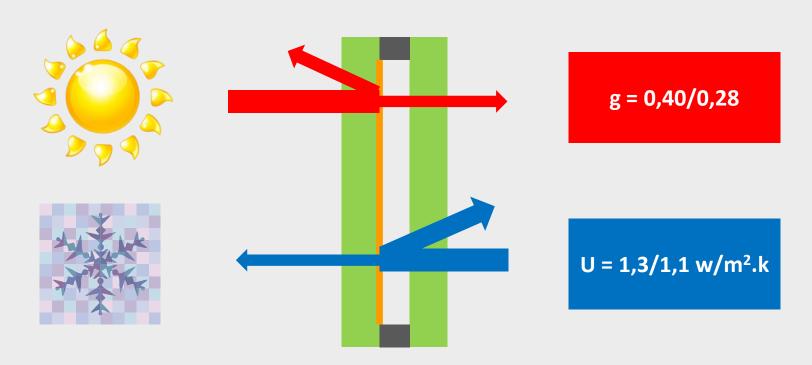
CÓMO MEJORAR LA g?


- ELEMENTOS FIJOS
 - LAMAS
 - VEGETACIÓN...
- ELEMENTOS MÓVILES
 - STORES
 - PERSIANAS...
- VIDRIO
 - REFLECTANTE/COLOR + BAJO EMISIVO

LA SOLUCIÓN CON VIDRIO

- VIDRIO QUE APORTE
 - PROTECCIÓN SOLAR
 - AISLAMIENTO TÉRMICO

VIDRIO DE CAPA SELECTIVA



EL VIDRIO ACTUAL

Vidrio aislante con capa SELECTIVA 1990/95

	TL	U		g	
FLOAT 4	90%	5,7	F 40/	0,86	120/
4 /16/ 4	80%	2,7 / 2,6	54%	0,77	12%
4 /16/ K4	80%	1,4 /1,1	58%	0,62	17%
			81%		28%
CS4 /16/ 4	69%	1,3 / 1,1		0,41	34%
CS6 /16/ 4	60%	1,3 / 1,1		0,28	55%

CONCLUSIONES

PARA DISMINUIR DEMANDA ENERGÉTICA

- REDUCIR CALEFACCIÓN
- REDUCIR REFRIGERACIÓN

SE DEBE MEJORAR EL HUECO

- AISLAMIENTO TÉRMICO
- PROTECCIÓN SOLAR

CONSIDERAR TODOS SUS COMPONENTES

- MISMO NIVEL DE PRESTACIONES
- ESPECIALMENTE EL VIDRIO (± 85% del hueco)

LA NO SOLUCIÓN = VIDRIO BAJO EMISIVO

- NO SIRVE PARA NUESTRAS LATITUDES
- ÚNICAMENTE PARA ZONAS MUY FRÍAS

LA SOLUCIÓN ADECUADA

VIDRIO DE CAPA SELECTIVA

NO SE TRATA DE UN VIDRIO DE FUTURO SE TRATA DEL **VIDRIO ACTUAL**

